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Abstract— Underwater environments present unique chal-
lenges for robotic operation, including complex hydrodynamics,
limited visibility, and constrained communication. Although
data-driven approaches have advanced embodied intelligence
in terrestrial robots and enabled task-specific autonomous
underwater robots, developing underwater intelligence capable
of autonomously performing multiple tasks remains highly
challenging, as large-scale, high-quality underwater datasets
are still scarce. To address these limitations, we introduce
USIM, a simulation-based multi-task Vision-Language-Action
(VLA) dataset for underwater robots. USIM comprises over
561K frames from 1,852 trajectories, totaling approximately
15.6 hours of BlueROV2 interactions across 20 tasks in 9
diverse scenarios, ranging from visual navigation to mobile
manipulation. Building upon this dataset, we propose U0,
a VLA model for general underwater robots, which inte-
grates binocular vision and other sensor modalities through
multimodal fusion, and further incorporates a convolution-
attention-based perception focus enhancement module (CAP)
to improve spatial understanding and mobile manipulation.
Across tasks such as inspection, obstacle avoidance, scanning,
and dynamic tracking, the framework achieves a success rate
of 80%, while in challenging mobile manipulation tasks, it
reduces the distance to the target by 21.2% compared with
baseline methods, demonstrating its effectiveness. USIM and
U0 show that VLA models can be effectively applied to
underwater robotic applications, providing a foundation for
scalable dataset construction, improved task autonomy, and the
practical realization of intelligent general underwater robots.

I. INTRODUCTION

The underwater environment poses growing demands,
encompassing diverse applications such as marine ecological
surveys, resource exploitation, inspection of pipelines, and
underwater salvage [1], [2]. However, the unique character-
istics of the underwater environment make human operations
far more challenging and hazardous compared to terrestrial
or aerial scenarios. Consequently, underwater robots have
gradually emerged as a key solution for executing underwater
tasks. The development of underwater robots faces distinc-
tive challenges, including complex hydrodynamics, limited
visibility, and restricted communication. These challenges
highlight the pressing need to enhance the autonomy and
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intelligence of underwater robots. Autonomous systems ca-
pable of executing complex underwater missions will greatly
extend humanity’s ability to operate in the oceans, which
cover 71% of the Earth’s surface, thereby advancing our
understanding and exploration of the planet.

In recent years, the construction of embodied intelligence
with physical-world manipulation capabilities has become
a trend in artificial intelligence and robotics. Data-driven
approaches are reshaping the field, enabling remarkable
advances in autonomy, particularly in humanoid [3] and
quadruped robots [4] powered by large-scale datasets and
advanced algorithms. In contrast, many complex underwater
tasks still heavily rely on human teleoperation. For example,
in underwater grasping tasks, even experienced operators re-
quire extensive practice to improve grasping performance [5].
As a result, collecting large-scale, high-quality data in real
underwater environments remains highly costly. Although
existing studies have developed frameworks for teleopera-
tion [6] and autonomous underwater intervention tasks [7],
significant challenges remain in integrating multiple tasks.
Taken together, these limitations have led to fragmented
“data islands”, where the lack of unified frameworks and
accessible datasets stands in stark contrast to the urgent
demand for higher autonomy and intelligence in underwater
robots.

To address these challenges, we introduce USIM, an
underwater simulation-based multi-task Vision-Language-
Action (VLA) dataset, which comprises both perception and
control traces of a BlueROV2 underwater robot platform.
Collected within simulation environments constructed using
the Stonefish simulator [8], [9], USIM consists of 561K
frames spanning 1,852 trajectories and approximately 15.6
hours of robot–environment interactions. It covers 20 tasks
across 9 scenarios, ranging from visual navigation to mobile
manipulation. Building upon this dataset, we further propose
U0, a VLA model for general underwater robots. Built
on Isaac-GR00T N1.5 [10], U0 combines multimodal fu-
sion of multi-source sensor data with convolution-attention-
based perception focus enhancement to better perform un-
derwater tasks. It integrates binocular vision with additional
sensors to enhance spatial understanding, addressing the
specific embodiment of underwater robots that combines
thruster locomotion and manipulator control. Furthermore,
the convolution-attention-based perception focus enhance-
ment module (CAP), guided by features of the Vision-
Language Model (VLM), improves orientation estimation
and facilitates mobile manipulation. We conduct extensive
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Fig. 1: Overall Framework. Diverse underwater scenarios and a BlueROV2 robot equipped with a manipulator and gripper
are first constructed using the Stonefish simulator. Data collection and control are implemented via ROS, resulting in the
USIM dataset of 561K frames (approximately 15.6 hours) covering 20 tasks. Based on USIM, U0 is developed with a dual-
system architecture, incorporating multimodal sensor fusion and convolution-attention-based perception focus enhancement,
while producing both target perception and robot action outputs.

validation in the testing dataset and simulation environments.
With a model size of 3B parameters, U0 is lightweight
enough for deployment on embedded AI computing plat-
forms such as NVIDIA Jetson, facilitating practical realiza-
tion of embodied intelligence in underwater scenarios.

Overall, we present a scalable data-to-task framework that
integrates a self-constructed VLA dataset and a VLA model
suitable for diverse underwater tasks. To the best of our
knowledge, this is the first effort to jointly address multi-
task underwater perception and action guided by language
instructions. The main contributions of this paper are sum-
marized as follows:

• A high-quality underwater VLA dataset (USIM) is
constructed, comprising more than 561K frames from
1,852 trajectories, totaling around 15.6 hours of
robot–environment interactions, and covering 20 tasks

across 9 diverse scenarios.
• A VLA model for general underwater robots (U0) is

proposed, which achieves enhanced spatial understand-
ing and improved performance in mobile manipula-
tion tasks through multimodal fusion and convolution-
attention-based perception focus enhancement.

• A scalable data-to-task framework is established for
underwater robots. Across tasks such as inspection, nav-
igation, and dynamic tracking, the framework achieves
a success rate of 80%. In challenging mobile ma-
nipulation tasks, it reduces the distance between the
robot and the target by 21.2% compared with baseline
model, demonstrating its potential for handling such
tasks effectively.

U0 demonstrates that VLA models can be effectively
trained for underwater robotic applications, providing new



perspectives for dataset construction and utilization toward
developing more intelligent underwater robots.

II. RELATED WORK

A. Towards Intelligent Underwater Robots

Underwater robots have evolved from remotely operated
vehicles (ROVs) to autonomous underwater vehicles (AUVs).
Traditional ROVs rely on tethers and human teleoperation,
which not only restrict their operational range but also
require operators with specialized knowledge and proficient
control skills [6]. Moreover, the per-joint manual control
mode used in some tasks proves inefficient. To address
these limitations, the development of AUVs that integrate
perception, planning, and control capabilities, enabling semi-
autonomous navigation and intervention, has become a major
direction in underwater robotics. Recently, data-driven ap-
proaches such as reinforcement learning (RL) and imitation
learning (IL) have been explored for various underwater
tasks, including motion control [11], path planning [12], for-
mation control and obstacle avoidance [13], target tracking
[14], [15], autonomous navigation [16], and manipulation
[5], [17]. In addition, large language models and vision-
based deep learning methods have been employed to enhance
high-level cognition [18] and human-robot interaction [19]
in autonomous underwater systems. Nevertheless, develop-
ing general-purpose models capable of handling multiple
underwater tasks remains challenging and warrants further
research.

B. Vision-Language-Action Datasets and Models

The robotics community has witnessed rapid progress
in indoor embodied datasets and VLA models. Based on
datasets such as DROID [20], Open X-Embodiment [21],
and AgiBot World [22], pioneering VLA models including
RT-2 [23], OpenVLA [24], π0 [25], and GR00T N1.5 [10],
demonstrate that combining multimodal perception with
large-scale pretraining enables robots to generalize across
tasks and environments. These advances have significantly
propelled the development of domestic and indoor service
robots, facilitating zero-shot generalization in navigation
and manipulation. However, to our knowledge, research on
constructing VLA models specifically for underwater robots
remains scarce.

C. Underwater Datasets and Simulation Platforms

The performance of VLA models critically depends
on large-scale training data, which can originate from
video demonstrations, synthetic data, and real-world multi-
modal datasets [10]. Existing underwater datasets, including
VAROS, UIEB, AQUALOC, and Underwater Caves Sonar
Data Set [26]–[29], provide images, sonar data, and other
sensory modalities, while various synthetic data generation
methods have also been proposed [30]. These datasets pri-
marily aim to enhance the perception capabilities of under-
water robots. Given the high cost and risk of real-world
underwater experiments, collecting data in simulation offers

advantages in efficiency and safety. Popular underwater sim-
ulators include HoloOcean, Dave, FishGym, and Stonefish
[8], [9], [31], [32], which simulate fluid dynamics, visual
degradation, and common underwater sensors. Overall, exist-
ing underwater datasets are largely task-specific and provide
insufficient diversity required for developing unified frame-
works, underscoring the benefits of leveraging underwater
simulators to generate more comprehensive datasets.

III. METHOD

The overall framework of this work is illustrated in Fig. 1,
consisting of simulation environment, dataset, and the VLA
model. Details are described below.

A. Simulation Environment Construction

To generate sufficient high-quality data for training and
evaluating the VLA model, we constructed nine distinct
underwater scenarios using the Stonefish simulator. These
scenarios include seabed environment, subsea pipeline, in-
dustrial pool, solar charging station, lake environment, open
sea surface, underwater factory, modern shipwreck, and
ancient shipwreck, as shown in Fig. 2. Subsequently, we built
a BlueROV2 underwater robot equipped with a manipulator
and parallel gripper within Stonefish, allowing real-time
simulation of hydrodynamics, collisions, and grasping be-
havior. We further integrated the simulation with ROS using
Stonefish’s ROS package, facilitating automated data collec-
tion. To enhance scene diversity, we implemented multiple
map randomization modules, generating environments with
variable object placement. Leveraging Stonefish’s rendering
capabilities, we randomized sunlight conditions and water
clarity as shown in Fig. 3. By incorporating scenario design,
map randomization, and varying lighting conditions, our
simulation environment generates diverse and realistic visual
scenes, resulting in a dataset that exhibits both high diversity
and realism. Such characteristics are expected to improve the
generalization of models trained on this dataset.

B. Dataset Generation

The dataset comprises 20 tasks across 9 scenarios, totaling
561K frames and 1,852 trajectories (recorded at 10 Hz, ap-
proximately 15.6 hours) of high-quality robotic data. Among
these, 526K frames with 1,752 trajectories are allocated for
training, and 35K frames with 100 trajectories are reserved
for testing, each provided in separate datasets formatted
according to the LeRobot specification. The 20 tasks include
12 grasping tasks, 2 pipeline inspection tasks, 2 underwater
shipwreck scanning tasks, 2 obstacle-avoidance navigation
tasks, 1 dynamic tracking task, and 1 transport task, with
example task trajectories illustrated in Fig. 4. The number
of episodes, average duration, and total frames for each task
are presented in Table I. As a VLA dataset, USIM provides
language instructions, robot sensory inputs, and action data.
The distribution of frames across different language instruc-
tions is shown in Fig. 5. Sensor modalities include binocular
camera images, a pressure sensor, an inertial measurement
unit (IMU), and a Doppler velocity log (DVL), while action
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TABLE I: Details of the USIM Dataset

Task ID Episodes Avg. duration (s) Total frames

Pick red factory 105 23 23,862
Pick red shallow 105 24 25,148
Pick redx factory 105 22 23,595
Pick redx shallow 105 25 25,817
Pick blue factory 105 23 24,013
Pick blue shallow 105 26 27,262
Pick bluex factory 105 22 23,111
Pick bluex shallow 105 25 25,860
Pick pipe0 factory 105 22 23,591
Pick pipe0 shallow 105 23 23,838
Pick pipe1 factory 105 22 23,121
Pick pipe1 shallow 105 23 24,639
Transfer red shallow 105 29 30,106
Goto charge station 105 15 15,228
Goto water tower 107 28 30,478
Follow boat 55 36 19,564
Scan ship modern 55 67 36,794
Scan ship ancient 55 72 39,339
Inspect pipeline sea 55 65 35,670
Inspect pipeline pool 55 110 60,261
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Fig. 5: Task distribution of the USIM dataset.

signals consist of thruster pulse-width modulation (PWM)
signals and manipulator joint angles. To enable large-scale
data acquisition, we developed an automated parallel data
collection pipeline with task-specific execution logic. At
the control level, a PID controller ensures accurate ROV
pose tracking, whereas grasping tasks leverage MoveIt for
manipulator planning and control.

C. Underwater VLA Model

The scarcity of large-scale underwater robotic datasets
makes training a VLA model from scratch impractical.
Therefore, we propose U0, a VLA model for underwater
tasks built upon the pre-trained Isaac-GR00T N1.5 backbone.
The upper part of Fig. 1 illustrates the overall architecture.
The model accepts multi-modal sensor data as input. Vi-
sual images and language instructions are first processed
through respective encoders and then fed into the VLM,
while additional sensor modalities and robot action data
are provided to a diffusion transformer. The transformer
integrates these inputs with the VLM features via cross-
attention to generate actions. Concurrently, the VLM fea-
tures are passed through the CAP module, which leverages

convolution-attention mechanisms to enhance visual feature
representations, thereby improving the model’s ability to
capture the relationships between underwater motion states
and task objectives.

Multimodal Fusion of Multi-Source Sensor Data. Un-
like terrestrial robots, underwater robots operate predomi-
nantly in a floating state and must coordinate movement
with manipulator actions. They also frequently change depth,
in contrast to most ground robots that are limited to hori-
zontal movement. In addition, underwater visual perception
is strongly affected by environmental disturbances such as
turbidity, lighting variations, and water currents. To address
these challenges, we incorporate underwater-specific sensors
into the state space, including pressure sensor, IMU, and
DVL, enabling the model to develop accurate proprioception
and localization. Furthermore, binocular camera images from
the robot are also provided as input to enhance visual percep-
tion capabilities. The action space of underwater robots also
differs from that of terrestrial robots. Beyond manipulator
control, locomotion is primarily achieved through multiple
thrusters, whose control signals occupy a distinct force space.
We normalize thruster PWM signals and combine them with
manipulator joint angles to construct the action space, while
including both in the state space to improve the model’s
understanding of current robot actions.

To enable the model to reason effectively about task goals
relative to the robot’s current state, we represent target po-
sitions and orientations in a robot-centric coordinate system.
Specifically, let the six-degree-of-freedom poses of the target
and the robot in the world coordinate system be

pt = (Rt, tt), pr = (Rr, tr), (1)

where R ∈ SO(3) denotes the rotation matrix and t ∈ R3

the translation vector. Then, the target pose expressed in the
robot-centric coordinate system is given by

pt2r =
(
R⊤

r Rt, R
⊤
r (tt − tr)

)
. (2)

We use pt2r to construct ground-truth labels for training.
Compared with the global coordinate representation, this
relative formulation better captures the dynamic motion
characteristics of underwater scenarios and mitigates the
dependency on a fixed world reference frame. Furthermore,
it aligns with the egocentric reasoning principle observed in
biological decision-making processes, thereby enhancing the
model’s generalization ability across diverse tasks.

Convolution-Attention-based Perception Focus En-
hancement Module. Due to severe visual degradation in
underwater environments, relying solely on the vision capa-
bility of GR00T N1.5 is insufficient for accurately capturing
target objects. To address this limitation, U0 extends Isaac-
GR00T N1.5 with a convolution-attention-based perception
focus enhancement module guided by VLM features. This
module strengthens the model’s ability to detect and localize
target objects. Fig. 6 illustrates the architecture of the CAP
module, which is composed of convolutional layers, attention
layers, pooling operations, and a multilayer perceptron. The
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computation process is formulated as:

Token = VLM
(

Imgleft, Imgright

)
, (3)

F = Conv (Token,MASK) , (4)

Att = Conv(F ), (5)

T = MLP (pool (F · Att)) , (6)

where Imgleft and Imgright denote stereo images from the
binocular vision sensor, VLM(·) represents the Vision-
Language model, and Token denotes the extracted fea-
tures. Conv(·) refers to convolutional operations, while
MASK avoids computation over padding features. Att repre-
sents channel-wise attention, pool(·) is a pooling operation,
MLP(·) denotes the multilayer perceptron, F is the interme-
diate feature, and T is the predicted target.

The training objective of the CAP module is formulated
as a mean squared error (MSE) loss between the predicted
target T and the ground truth Tgt:

LCAP = MSE(T, Tgt). (7)

For action module, we follow the original GR00T N1.5
training objectives. The sum of the losses of the two modules
serves as the overall loss L.

L = Laction + αLCAP, (8)

where, Laction is the loss of the action module and α
represents the weight factor.

Training Details. Our training was conducted using a total
batch size of 1024 for 5000 steps. During training, the CAP

module functions as an auxiliary task branch to enhance
perception of target-related visual features. This branch can
be disabled during inference, ensuring that deployment does
not incur any increase in model size or computational latency.

IV. EXPERIMENTS

In this section, we establish a set of challenging bench-
marks to evaluate the effectiveness of the proposed U0 model
and the USIM dataset. The evaluation is primarily conducted
through open-loop offline evaluation and closed-loop online
testing.

A. Open-Loop Offline Evaluation

In the offline evaluation, we constructed a simulation-
based test dataset, comprising 20 tasks with 5 trajectories
each, totaling 35K frames (approximately 1 hour). We com-
pared the performance of three models on this test dataset:
the original GR00T N1.5 without fine-tuning, GR00T N1.5
fine-tuned on the proposed USIM dataset (denoted GR00T
FT), and U0, which incorporates the CAP module. To further
assess visual perception in underwater settings, we conducted
experiments with both monocular and binocular image in-
puts. For GR00T FT and U0, fine-tuning was performed
separately on the monocular and binocular variants of the
training dataset. The results are summarized in Table II,
where tasks sharing the same instruction are aggregated.
Here, eaction denotes the error of the action module, and etarget
represents the error of the CAP module.

The results indicate that directly applying GR00T N1.5
to underwater tasks yields substantially higher errors–its
average eaction is an order of magnitude larger than that of the
fine-tuned models–highlighting the significant domain gap
between the humanoid robot datasets used during pretrain-
ing and the underwater domain. Fine-tuning on the USIM
dataset substantially improves performance, validating the
effectiveness of our proposed dataset. Interestingly, under
the pretrained weights, GR00T N1.5 performs better with
monocular images than with binocular inputs, suggesting that
without domain adaptation, the model favors monocular data
more consistent with its pretraining distribution. However,
after training on the USIM dataset, binocular data exhibit
a clear advantage, with models achieving higher action
accuracy and overall better perceptual precision compared
to monocular inputs.

Compared with GR00T FT, U0 achieves a reduction of
7.7% and 4.2% in average eaction under monocular and binoc-
ular inputs, respectively. This demonstrates that incorporating
the convolution-attention-based perception focus enhance-
ment module significantly improves the model’s ability to
perceive target objects and, consequently, enhances action
accuracy. Notably, in monocular grasping tasks, U0 achieves
substantial performance gains over GR00T FT, indicating
that the CAP module effectively mitigates the inherent limi-
tations of monocular 3D spatial perception. This advantage,
however, becomes less pronounced when binocular vision is
available.



TABLE II: Comparison of eaction and etarget Across Tasks

Task Number
eaction (Mono) eaction (Bino) etarget (U0)

GR00T N1.5 GR00T FT U0 GR00T N1.5 GR00T FT U0 Mono Bino

Inspect the pipeline. 10 0.3186 0.1036 0.1065 0.3228 0.1183 0.1104 0.1434 0.1488
Scan the ship. 10 0.3469 0.1012 0.1004 0.3461 0.1054 0.1020 1.2566 1.0339
Go to the water tower. 5 0.3936 0.0724 0.0740 0.3828 0.0857 0.0936 1.5797 1.7723
Go to the charge station. 5 0.3425 0.0705 0.1053 0.3511 0.1112 0.0920 0.6363 0.8541
Follow the boat. 5 0.3403 0.3586 0.3430 0.3407 0.0397 0.0310 0.2438 0.1237
Pick up the red cylinder. 20 0.1850 0.0512 0.0448 0.1835 0.0510 0.0523 0.0253 0.0330
Pick up the blue cylinder. 20 0.1861 0.0447 0.0393 0.1915 0.0412 0.0412 0.0250 0.0303
Pick up the pipe. 20 0.1878 0.0509 0.0330 0.1888 0.0397 0.0359 0.0231 0.0330
Pick up the red cylinder
and transfer it to the box. 5 0.2264 0.0842 0.0563 0.2356 0.0265 0.0271 0.7309 0.0557

ALL 100 0.2435 0.0791 0.0730 0.2451 0.0619 0.0593 0.3142 0.2778
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Fig. 7: Comparison of online success rates across multiple tasks.

TABLE III: Mean Robot–Target Distance in Mobile Grasp-
ing Tasks

Task ID Mean distance

GR00T FT U0 Mono U0 Bino

Pick red shallow 0.3580 0.3100 0.2515
Pick blue shallow 0.3801 0.2651 0.2884
Pick pipe0 shallow 0.2932 0.2850 0.2810
Pick redx shallow 0.3312 0.3721 0.2346
Pick red factory 0.3837 0.3496 0.3204

ALL 0.3492 0.3164 0.2752

Overall, the offline evaluation results confirm the feasibil-
ity of using the USIM dataset for training underwater VLA
models, while also demonstrating the effectiveness of U0’s
multimodal fusion of multi-source sensory information and
convolution-attention-based perception focus enhancement.

B. Closed-loop Online Testing

To further validate the effectiveness of U0, we integrated
GR00T N1.5, GR00T FT, and U0 into the simulation envi-
ronment and evaluated their performance on actual task exe-
cutions, covering five grasping tasks and seven non-grasping
tasks. Since the untrained GR00T N1.5 failed to complete
any of the tasks (with a success rate of 0%), its results

were excluded from the statistics. For U0, we examined
its performance under both monocular and binocular visual
inputs.

In the seven non-grasping tasks, each model was executed
10 times per task, and the corresponding success rates were
recorded, as shown in Fig. 7. Across these tasks, U0 achieved
an average success rate of 80%, demonstrating its capability
to perform general-purpose task execution. The average
success rate also indicates that U0 equipped with binocular
vision consistently outperforms its monocular counterpart
and surpasses GR00T FT across tasks, corroborating the
results observed in the open-loop offline evaluation. At the
task level, the performance patterns of GR00T FT and
U0 also closely align with those reported in the offline
evaluation.

For the five challenging mobile grasping tasks, each
model was executed five times per task, and the distances
between the ROV and the target objects were measured, as
summarized in Table III. U0 with binocular input reduced
the average distance to the target by 21.2% compared with
GR00T FT. These results demonstrate that U0 more accu-
rately identifies target locations and initiates grasp attempts,
further validating the effectiveness of the CAP module. In
addition, U0 achieves higher localization accuracy when
using binocular vision compared to monocular vision.



Overall, the online evaluation results are highly consis-
tent with those of the offline evaluation. They not only
highlight U0’s capabilities in underwater navigation, ob-
stacle avoidance, inspection, and scanning, but also reveal
its potential in handling challenging mobile grasping tasks
that require accounting for fluid dynamics and the complex
interactions among the vehicle body, manipulator, and target
objects. These findings further confirm the feasibility of
leveraging simulation environments to generate data and train
underwater VLA models with generalizable task-execution
capabilities.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented USIM, a large-scale
simulation-based multi-task dataset, and U0, a Vision-
Language-Action model for general underwater robots. By
leveraging binocular vision, multimodal sensor fusion, and
the convolution-attention-based perception focus enhance-
ment module, U0 achieves an 80% average success rate
on non-grasping tasks and reduces the distance to targets
in challenging mobile grasping tasks by 21.2% compared
with the baseline, demonstrating the feasibility of training
underwater VLA models with simulation-generated data.

Future work includes improving U0’s performance in
mobile grasping through richer simulation scenarios and
more diverse data collection strategies. Incorporating addi-
tional modalities such as sonar could enhance perception
in deep-water or low-visibility environments. Finally, real-
world deployment and field validation are necessary steps
toward fully autonomous, multi-task underwater robots.

REFERENCES

[1] T. Liu et al., “A bioinspired multimotion modality underwater micro-
robot,” Sci. Adv., vol. 11, no. 19, May 2025, Art. no. eadu2527.

[2] R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Explo-
ration of underwater life with an acoustically controlled soft robotic
fish,” Sci. Robot., vol. 3, no. 16, Mar. 2018, Art. no. eaar3449.

[3] Z. Su et al., “Hitter: A humanoid table tennis robot via hierarchical
planning and learning,” arXiv preprint arXiv:2508.21043, Sep. 2025.

[4] X. Tong et al., “Quart–online: Latency–free multimodal large language
model for quadruped robot learning,” in Proc. 2025 IEEE Int. Conf.
Robot. Autom. (ICRA), Atlanta, GA, USA, May 2025, pp. 9533–9539.

[5] R. Liu, H. Ha, M. Hou, S. Song, and C. Vondrick, “Self–improving
autonomous underwater manipulation,” in Proc. 2025 IEEE Int. Conf.
Robot. Autom. (ICRA), Atlanta, GA, USA, May 2025, pp. 16 915–
16 922.

[6] A. Phung, G. Billings, A. F. Daniele, M. R. Walter, and R. Camilli, “A
shared autonomy system for precise and efficient remote underwater
manipulation,” IEEE Trans. Robot., vol. 40, pp. 4147–4159, 2024.

[7] E. Palmer, C. Holm, and G. Hollinger, “Angler: An autonomy
framework for intervention tasks with lightweight underwater vehicle
manipulator systems,” in Proc. 2024 IEEE Int. Conf. Robot. Autom.
(ICRA), Yokohama, Japan, May 2024, pp. 6126–6132.

[8] P. Cieslak, “Stonefish: An advanced open–source simulation tool
designed for marine robotics, with a ros interface,” in Proc. OCEANS
2019 – Marseille, Marseille, France, Jun. 2019, pp. 1–6.

[9] M. Grimaldi et al., “Stonefish: Supporting machine learning research
in marine robotics,” in Proc. 2025 IEEE Int. Conf. Robot. Autom.
(ICRA), Atlanta, GA, USA, May 2025, pp. 13 605–13 611.

[10] NVIDIA et al., “Gr00t N1: An open foundation model for generalist
humanoid robots,” arXiv preprint arXiv:2503.14734, Mar. 2025.

[11] J. Gu, J. Wang, Z. Liu, M. Tan, J. Yu, and Z. Wu, “Deformation control
and thrust analysis of a flexible fishtail with muscle-like actuation,”
IEEE Trans. Robot., vol. 41, pp. 159–179, 2025.

[12] J. Yang, J. Ni, M. Xi, J. Wen, and Y. Li, “Intelligent path planning
of underwater robot based on reinforcement learning,” IEEE Trans.
Automat. Sci. Eng., vol. 20, no. 3, pp. 1983–1996, Jul. 2023.

[13] Z. Fang, T. Chen, T. Shen, D. Jiang, Z. Zhang, and G. Li, “Multi–
agent generative adversarial interactive self–imitation learning for auv
formation control and obstacle avoidance,” IEEE Robot. Autom. Lett.,
vol. 10, no. 5, pp. 4356–4363, May 2025.

[14] Y. Wang et al., “Target tracking control of a biomimetic underwater
vehicle through deep reinforcement learning,” IEEE Trans. Neural
Netw. Learning Syst., vol. 33, no. 8, pp. 3741–3752, Aug. 2022.

[15] I. Masmitja et al., “Dynamic robotic tracking of underwater targets
using reinforcement learning,” Sci. Robot., vol. 8, no. 80, Jul. 2023,
Art. no. eade7811.

[16] X. Lin et al., “Uivnav: Underwater information–driven vision–based
navigation via imitation learning,” in Proc. 2024 IEEE Int. Conf.
Robot. Autom. (ICRA), Yokohama, Japan, May 2024, pp. 5250–5256.

[17] J. Gao, Y. Li, Y. Chen, Y. He, and J. Guo, “An improved SAC–based
deep reinforcement learning framework for collaborative pushing and
grasping in underwater environments,” IEEE Trans. Instrum. Meas.,
vol. 73, pp. 1–14, 2024.

[18] M. Buchholz, I. Carlucho, M. Grimaldi, and Y. R. Petillot, “Distributed
AI agents for cognitive underwater robot autonomy,” arXiv preprint
arXiv:2507.23735, Aug. 2025.

[19] A. Gomez Chavez, A. Ranieri, D. Chiarella, and A. Birk, “Underwater
vision-based gesture recognition: A robustness validation for safe
human–robot interaction,” IEEE Robot. Automat. Mag., vol. 28, no. 3,
pp. 67–78, Sep. 2021.

[20] A. Khazatsky et al., “Droid: A large–scale in–the–wild robot manip-
ulation dataset,” arXiv preprint arXiv:2403.12945, Apr. 2025.

[21] A. O’Neill et al., “Open X-embodiment: Robotic learning datasets and
RT-X models : Open X-embodiment collaboration0,” in Proc. 2024
IEEE Int. Conf. Robot. Autom. (ICRA), Yokohama, Japan, 2024, pp.
6892–6903.

[22] AgiBot–World–Contributors et al., “Agibot world colosseo: A large–
scale manipulation platform for scalable and intelligent embodied
systems,” arXiv preprint arXiv:2503.06669, Aug. 2025.

[23] B. Zitkovich et al., “Rt-2: Vision-language-action models transfer web
knowledge to robotic control,” in Proc. 7th Conf. Robot Learning
(CoRL), vol. 229, Nov 2023, pp. 2165–2183.

[24] M. J. Kim et al., “Openvla: An open–source vision–language–action
model,” arXiv preprint arXiv:2406.09246, Sep. 2024.

[25] K. Black et al., “π0: A vision–language–action flow model for general
robot control,” arXiv preprint arXiv:2410.24164, Nov. 2024.

[26] P. Georg Olofsson Zwilgmeyer, M. Yip, A. Langeland Teigen,
R. Mester, and A. Stahl, “The varos synthetic underwater data set:
Towards realistic multi-sensor underwater data with ground truth,” in
Proc. 2021 IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW),
Montreal, BC, Canada, Oct. 2021, pp. 3715–3723.

[27] C. Li et al., “An underwater image enhancement benchmark dataset
and beyond,” IEEE Trans. on Image Process., vol. 29, pp. 4376–4389,
2020.

[28] M. Ferrera, V. Creuze, J. Moras, and P. Trouvé-Peloux, “Aqualoc:
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